Fireup Graphlab create


In [ ]:
import graphlab

Load some house sales data


In [47]:
sales = graphlab.SFrame('home_data.gl/')
sales.save('home_sales.csv', format='csv')

In [20]:
sales


Out[20]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
7129300520 2014-10-13 00:00:00+00:00 221900 3 1 1180 5650 1 0
6414100192 2014-12-09 00:00:00+00:00 538000 3 2.25 2570 7242 2 0
5631500400 2015-02-25 00:00:00+00:00 180000 2 1 770 10000 1 0
2487200875 2014-12-09 00:00:00+00:00 604000 4 3 1960 5000 1 0
1954400510 2015-02-18 00:00:00+00:00 510000 3 2 1680 8080 1 0
7237550310 2014-05-12 00:00:00+00:00 1225000 4 4.5 5420 101930 1 0
1321400060 2014-06-27 00:00:00+00:00 257500 3 2.25 1715 6819 2 0
2008000270 2015-01-15 00:00:00+00:00 291850 3 1.5 1060 9711 1 0
2414600126 2015-04-15 00:00:00+00:00 229500 3 1 1780 7470 1 0
3793500160 2015-03-12 00:00:00+00:00 323000 3 2.5 1890 6560 2 0
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
0 3 7 1180 0 1955 0 98178 47.51123398
0 3 7 2170 400 1951 1991 98125 47.72102274
0 3 6 770 0 1933 0 98028 47.73792661
0 5 7 1050 910 1965 0 98136 47.52082
0 3 8 1680 0 1987 0 98074 47.61681228
0 3 11 3890 1530 2001 0 98053 47.65611835
0 3 7 1715 0 1995 0 98003 47.30972002
0 3 7 1060 0 1963 0 98198 47.40949984
0 3 7 1050 730 1960 0 98146 47.51229381
0 3 7 1890 0 2003 0 98038 47.36840673
long sqft_living15 sqft_lot15
-122.25677536 1340.0 5650.0
-122.3188624 1690.0 7639.0
-122.23319601 2720.0 8062.0
-122.39318505 1360.0 5000.0
-122.04490059 1800.0 7503.0
-122.00528655 4760.0 101930.0
-122.32704857 2238.0 6819.0
-122.31457273 1650.0 9711.0
-122.33659507 1780.0 8113.0
-122.0308176 2390.0 7570.0
[21613 rows x 21 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.

Exploring the data for housing sales


In [22]:
#graphlab.canvas.set_target('ipynb')
graphlab.canvas.set_target('browser')
sales.show(view="Scatter Plot", x="sqft_living", y="price")


Canvas is accessible via web browser at the URL: http://localhost:49199/index.html
Opening Canvas in default web browser.

Create simple regession model of sqft_living to price


In [26]:
training_data, test_data = sales.random_split(.8, seed=0)

Build the regression model


In [27]:
sqft_model = graphlab.linear_regression.create(training_data, target='price', features=['sqft_living'])


PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
          You can set ``validation_set=None`` to disable validation tracking.

Linear regression:
--------------------------------------------------------
Number of examples          : 16512
Number of features          : 1
Number of unpacked features : 1
Number of coefficients    : 2
Starting Newton Method
--------------------------------------------------------
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| Iteration | Passes   | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| 1         | 2        | 1.023335     | 4365641.724488     | 4291712.138666       | 260723.730443 | 301989.057716   |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
SUCCESS: Optimal solution found.

Evaluate the simple model


In [28]:
print test_data['price'].mean()


543054.042563

In [30]:
print sqft_model.evaluate(test_data)


{'max_error': 4156269.632260985, 'rmse': 255166.23936085022}

Lets show what our predictions look like


In [34]:
import matplotlib.pyplot as plt
%matplotlib inline

In [38]:
plt.plot(test_data['sqft_living'], test_data['price'], '.', test_data['sqft_living'], sqft_model.predict(test_data), '-')


Out[38]:
[<matplotlib.lines.Line2D at 0x12b0daf10>,
 <matplotlib.lines.Line2D at 0x12b0dafd0>]

In [39]:
sqft_model.coefficients


Out[39]:
name index value stderr
(intercept) None -44260.376647 5012.25604189
sqft_living None 280.383290636 2.20464242972
[2 rows x 4 columns]

explore other features in the data


In [42]:
my_features = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'zipcode']

In [44]:
sales[my_features].show()


Canvas is updated and available in a tab in the default browser.

In [46]:
sales.show(view='BoxWhisker Plog', x='zipcode', y='price')


Canvas is accessible via web browser at the URL: http://localhost:49199/index.html
Opening Canvas in default web browser.

In [48]:
my_features_model = graphlab.linear_regression.create(training_data, target='price', features=my_features)


PROGRESS: Creating a validation set from 5 percent of training data. This may take a while.
          You can set ``validation_set=None`` to disable validation tracking.

Linear regression:
--------------------------------------------------------
Number of examples          : 16517
Number of features          : 6
Number of unpacked features : 6
Number of coefficients    : 115
Starting Newton Method
--------------------------------------------------------
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| Iteration | Passes   | Elapsed Time | Training-max_error | Validation-max_error | Training-rmse | Validation-rmse |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
| 1         | 2        | 0.032225     | 2583192.309717     | 3843891.258173       | 180070.429670 | 223368.514934   |
+-----------+----------+--------------+--------------------+----------------------+---------------+-----------------+
SUCCESS: Optimal solution found.


In [51]:
print sqft_model.evaluate(test_data)
print my_features_model.evaluate(test_data)


{'max_error': 4156269.632260985, 'rmse': 255166.23936085022}
{'max_error': 3533892.07212167, 'rmse': 184441.95401202946}

Apply learned models to predict 3 house prices


In [52]:
house1 = sales[sales['id']=='5309101200']

In [53]:
house1


Out[53]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
5309101200 2014-06-05 00:00:00+00:00 620000 4 2.25 2400 5350 1.5 0
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
0 4 7 1460 940 1929 0 98117 47.67632376
long sqft_living15 sqft_lot15
-122.37010126 1250.0 4880.0
[? rows x 21 columns]
Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.
You can use sf.materialize() to force materialization.


In [62]:
print house1['price']
print sqft_model.predict(house1)
print my_features_model.predict(house1)


[620000]
[628659.520878457]
[722175.3027128646]

In [63]:
house2 = sales[sales['id']=='1925069082']

In [64]:
house2


Out[64]:
id date price bedrooms bathrooms sqft_living sqft_lot floors waterfront
1925069082 2015-05-11 00:00:00+00:00 2200000 5 4.25 4640 22703 2 1
view condition grade sqft_above sqft_basement yr_built yr_renovated zipcode lat
4 5 8 2860 1780 1952 0 98052 47.63925783
long sqft_living15 sqft_lot15
-122.09722322 3140.0 14200.0
[? rows x 21 columns]
Note: Only the head of the SFrame is printed. This SFrame is lazily evaluated.
You can use sf.materialize() to force materialization.

In [68]:
print house2['price']
print sqft_model.predict(house2)
print my_features_model.predict(house2)


[2200000]
[1256718.091902175]
[1431549.9450503518]

Last house is super fancy


In [69]:
bill_gates = {'bedrooms':[8], 
              'bathrooms':[25], 
              'sqft_living':[50000], 
              'sqft_lot':[225000],
              'floors':[4], 
              'zipcode':['98039'], 
              'condition':[10], 
              'grade':[10],
              'waterfront':[1],
              'view':[4],
              'sqft_above':[37500],
              'sqft_basement':[12500],
              'yr_built':[1994],
              'yr_renovated':[2010],
              'lat':[47.627606],
              'long':[-122.242054],
              'sqft_living15':[5000],
              'sqft_lot15':[40000]}

In [72]:
print sqft_model.predict(graphlab.SFrame(bill_gates))
print my_features_model.predict(graphlab.SFrame(bill_gates))


[13974904.155132469]
[13471349.617239237]

In [ ]: